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Abstract
We have derived an analytical expression for light amplification for stimulated
emission in arbitrary two-dimensional photonic crystals (PHCs) using the
response formula of the PHCs and the Bloch equations. This shows that the
gain is proportional to the population inversion, and is inversely proportional to
the group velocity and the relaxation coefficient of the phase, which indicates
that the gain can be induced by population inversion and enhanced dramatically
by small group velocity or anomalous group velocity.

1. Introduction

It has been demonstrated that the small group velocities of the eigenmode would bring about
an enhancement of the effective gain or low-threshold lasing [1–4]. Konôpka [5] analysed
stimulated emission (STE) from the atom when its particular transition is tuned near the band
gap edge in a fully quantized field way. He described a model in which the initial multimode
field is a superposition of single photon states with the spectrum of energy localizing near the
band edge, and he assumed that the atom was at a fixed position. These assumptions have
some limitations. His intention was to demonstrate the influence of the initial field on the
dynamics of the atom–field system. He judged the STE near the band edge by whether the
atom predominantly emits into the initially occupied modes, which needs a very complicated
numerical calculation. The lasing threshold in photonic crystal (PHC) was also discussed by
carrying out a multiscale analysis of the appropriate Maxwell–Bloch equations [6], in which
the authors focused on band-edge lasers in one-dimensional (1D) and two-dimensional (2D)
PHC by using the Maxwell–Bloch equation and numerical calculation. We study the optical
gain and the lasing threshold by the formula for optical responses of the PHC and the Bloch
equations. We derive that the gain is proportional to the population inversion, and is inversely
proportional to the group velocity and the relaxation coefficient. This shows that there is an
enhancement to STE due to the small group velocity. The physical meaning of the result
obtained is explained.
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2. Analysis for light amplification

A periodic dielectric medium doped with two-level atoms is studied here. We consider that
the light propagates in a 1D PHC or a 2D PHC. For intense optical pulses containing many
photons a semi-classical treatment of the radiation field is adequate. We assume that the
polarized direction is parallel to the periodic plane. The Maxwell–Bloch equations are used to
describe the interacted-atom–field system. The propagation of electromagnetic radiation from
an impurity atom embedded in a PHC can be described by the following equations:
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where P(r, t) is the polarization field of the impurity atoms induced by the external field, and
ε(r) is the dielectric constant of the material, which is a periodic function of the position r.
According to the result Sakoda obtained [7], the induced electric field can be expressed as
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= 1
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This is just the optical response formula of the PHC. Here Ekn(r) is an eigenmode propagating
in the crystal, and V is the volume of the PHC.

On the other hand, the dynamics of the atoms in a PHC can be described by Bloch
equations:

dP(r, t)

dt
= (−i� − γP)P(r, t) +

1

ih̄
(E(r, t)d2)D(r, t), (3)

dD(r, t)
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= −γD(D(r, t) − D0(r, t)) − 4

ih̄
E(r, t)P∗(r, t), (4)

D(r, t) = ρ(r)D(t), (5)

where D(t) represents the population inversion, and is only a function of time t . D(r, t)
represents the population inversion at position r, D0(r, t) is the steady-state equilibrium
inversion at position r, ρ(r) characterizes the atom distribution within the PHC, i.e., the
atoms’ number density, d is the dipole matrix element of the atomic transition, � is the atomic
resonance frequency, and γD, γP is the relaxation coefficient of the population and that of the
phase, respectively.

Letting E = Ẽ(r, t)e−iωt , P = P̃(r, t)e−iωt , and substituting them into equations (3)
and (4), we can obtain

d P̃(r, t)

dt
= (−i(� − ω) − γP)P̃(r, t) +

1

ih̄
(Ẽ(r, t)d2)D(r, t), (6)

dD(r, t)

dt
= −γD(D(r, t) − D0(r, t)) − 4

ih̄
Ẽ(r, t)P̃∗(r, t), (7)

where P̃(r, t) is the slow-variation amplitude of the polarization, Ẽ(r, t) is the slow-variation
amplitude of the electronic field, and ω is the frequency of the electric field. In the following,
the wave signal is omitted.

Assuming γP � γD , the variation of the polarization can follow the variation of the
electric field in the period of 1/γP , so we can let d P̃(r, t)/dt = 0 in equation (6), and then we
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can obtain

P(r, t) = d2

(ω − � + iγP )h̄
Ekn(r, t)ρ(r)D(t). (8)

When we consider the case that the eigenfrequency is resonant with the two-level atom,
equation (8) can be expressed as

P(r, t) = d2

iγP h̄
ρ(r)D(t)Ekn(r) exp{(−iω + δ)t}. (9)

To assure adiabatic switching of the polarization, a positive infinitesimal δ is introduced, and
γP is assumed to be a very small finite positive quantity. Substituting equation (9) into (2), the
propagating part of the induced electric field is

E(r, t) = d2 D(t)
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)
. (10)

In the deduction, the structure of the PHC is assumed to be a cubic lattice, but the following
result is applicable to arbitrary structure PHCs. Similarly to the analysis made by Sakoda [10],
the total induced electric field of the impurity atoms can be approximated to

E(r, t) ≈ Ekn(r) exp(βl) exp(−iωt), (11)

where

β = f ωkn D(t)d2

2ε0vgh̄γP
(12)

is the amplitude amplification factor of the induced electric field per unit length, l is the PHC
length along the light propagating direction, and f = 1

V0

∫
V0

dr ρ(r)|Ekn(r)|2 is the effective
number density of the impurity atoms.

3. Results and discussions

From equation (11), the gain of the STE intensity can be obtained:

G = 2β = f ωkn D(t)d2

ε0vgh̄γP
. (13)

On the other hand, we can deduce the population inversion D(t) from equation (7). The
steady-state process can determine many properties such as the laser threshold, the gain and
the laser line width. When we consider the steady-state case, that is, dD(r, t)/dt = 0, and
dP(r, t)/dt = 0, using equations (6), (7) and (5), we can get

D(r, t) = D0(r, t)

1 + (|E(r, t)|2/Isat)
, (14)

D(t) = D0(t)

1 + (|E(r, t)|2/Isat)
, (15)

where Isat = h̄2γPγD/4d2 is the line-centre saturation field intensity (it represents the field
intensity at which the nonlinear response of the atoms becomes important), and D0(t) is the
steady-state equilibrium inversion. For a field intensity I � Isat, the atomic response is
saturated. In a PHC, Isat, which may be modified by the local density of state [6], is different
from its value in free space.
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Figure 1. Normalized gain as a function of the group velocity vg when the eigenmode intensity
I = |E(r, t)|2 = 0.1Isat (solid curve), I = Isat (dotted curve) and I = 10Isat (dashed curve). vg

is measured in units of α = f ωkn d2

ε0h̄γP

D0(t)
1+(|E(r,t)|2/Isat )

.

Substituting equation (15) into (13), we thus obtain

G = f ωkn d2

ε0h̄γPvg

D0(t)

1 + (|E(r, t)|2/Isat)
. (16)

The gain is proportional to the steady-state equilibrium inversion,but it is inversely proportional
to the group velocity of the eigenmode and the relaxation coefficient of the phase. Given the
group velocity, the steady-state equilibrium inversion and the relaxation coefficient, the optical
gain of STE in an arbitrary PHC can be calculated by equation (16). This indicates that the
gain in a PHC could be induced by the external field (reflected by population inversion), and
then can be enhanced by the small group velocity in the PHC. Near the band gap edge of a
PHC with infinite size, the group velocity approaches zero [8], and then the gain will become
infinite, which is described in figure 1. Furthermore, some scholars have demonstrated that
the group velocity anomaly can occur on the pass photonic band [4], which will cause a
fairly large enhancement of STE. Dowling et al [8] showed that the enhancement comes from
the long interaction time between the radiation field and the matter system due to the small
group velocity. Near the band gap edge or at the pass band where the group velocity is
anomalistic, the small group velocity is the dominant contribution to the gain, no matter how
small the population inversion D0(t) is. In particular, the gain can even occur when there is
no population inversion [9]. On the other hand, if the group velocity is not small, such as at
some pass band, but the population inversion is large enough, the gain is mainly induced by the
population inversion. The above results are different from that in the uniform material where
the optical gain will only be induced by population inversion in the general case. Moreover, in
uniform material, when the electric field intensity |E(r, t)|2 > Isat, the optical gain begins to
saturate. But in a PHC, even when |E(r, t)|2 � Isat, the gain may still be enhanced largely due
to the small group velocity. It can be found from figure 1 that, for a constant group velocity,
the optical gain begins to saturate under the condition that |E(r, t)|2 > Isat; therefore, the gain
still increases with decreasing group velocity.
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Figure 2. STE intensity as a function of the PHC length with group velocity vg = 2.5 × 10−6

(solid curve), vg = 3.0 × 10−6 (dotted curve) and vg = 5.0 × 10−6 (dashed curve). vg is measured
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.

From equations (11) and (15), the optical intensity of STE can be obtained:

I = I0 exp

(
f ωkn d2

ε0h̄γPvg

D0(t)

1 + (|E(r, t)|2/Isat)
l

)
, (17)

where I0 represents the initial field intensity. When the population inversion and the group
velocity of the PHC are appropriate values, the STE will increase exponentially with increasing
PHC length (see figure 2). The STE intensity is extremely sensitive to vg, D0(t) and l. For

example, assuming α = f ωkn d2

ε0h̄γP

D0(t)
1+(|E(r,t)|2/Isat )

, with l = 50 µm, vg = 5.0 × 10−6α, I = 53.5I0

and for vg = 2.5 × 10−6α, I = 2864I0. This phenomenon also demonstrates that the STE
can be drastically enhanced when the group velocity is very small. The STE intensity can be
evaluated practically by using equation (17), because the other parameters in equation (17),
such as I0, D0(t), γP , Isat, f , and d etc, can be determined by the experimental conditions.
This equation will benefit the design of a photonic band gap edge laser.

As an example, we proceed to the quantitative evaluation of the enhancement of STE
for a 2D PHC with a square lattice. Figure 3(a) shows the transmittance as a function of
the frequency for an incident wave with S polarization propagated perpendicular to the 2D
PHC with dielectric constant of 11.4. Figure 3(b) shows the transmittance for S polarization
calculated for the same crystal as figure 3(a) with a dielectric constant of 11.4 − 0.02i. The
crystal consists of 153 (9 ×17) dielectric rods arranged as a square lattice with lattice constant
250 nm and rod radius 74 nm. The negative imaginary part of the dielectric constant represents
the inverted population of the impurity atoms [11], corresponding to D0(t) in equation (17).
Note that the transmittance can be greater than unity because of the STE that takes place in the
crystals. Here, the strongest peak shows a large enhancement of the STE at 765 THz, which
exactly coincides with the third upper band-edge frequency (see figure 3(a)) where vg = 0.
This phenomenon simply demonstrates the result of equation (17). The enhancement factor,
which was estimated as the ratio of the transmittance when there are impurity atoms (shown in
figure 3(a)) to that when there are no impurity atoms (shown in figure 3(b)) in the PHCs, is as
large as 141. Because the calculated PHC is far from the infinite crystal, it is quite reasonable
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Figure 3. (a) The transmittance for S polarization as a function of the frequency calculated for a
square lattice crystal with 153 dielectric rods with dielectric constant of 11.4; (b) the transmittance
for S polarization as a function of the frequency calculated for the same crystal as (a) with dielectric
constant of 11.4 − 0.02i. The negative imaginary part of the dielectric constant represents the
population inversion of the impurity atoms. Note that the transmittance can be greater than unity
because of the STE.

that the amplification factor is not infinite due to the fact that vg = 0 at the band edges may be
difficult to attain with a finite size crystal.

4. Conclusion

In summary, we derive a practical formula for the light amplification in arbitrary structure 2D
PHCs by means of the Maxwell–Bloch equation. The optical gain in the PHCs is proportional
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to the population inversion and is inversely proportional to the group velocity. This shows that
the gain can be induced by population inversion and be enhanced by the small group velocity.
The difference between the STE in the PHCs and that in uniform materials is analysed.
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